On the basis of this study of reaction and decomposition velocities, we selected 70° as the optimum temperature for equilibrium measurements. Working at this temperature we showed that our method of analysis was efficient, and that a true equilibrium was established in the solution. Selecting the chloride for a more extended study we varied the concentrations both of the reacting substances and of the other chlorides present and showed that the equilibrium is affected both by the total concentration of the salt and by the concentration of the chlorine ion; it is, however, independent of the acidity of the solution.

We calculated the concentrations of the various molecular species present in the equilibrium mixtures and applied the simple concentration law to the various possible equilibria which might exist between them. No satisfactory equilibrium constant was obtained. When, however, the equilibrium was viewed as an electrolytic dissociation of purpureo compounds into roseo compounds and chlorine ions, and their concentrations were substituted in the Storch-Bancroft modification of the concentration law, an approximate constant was obtained; a further modification of this law gave an excellent constant. We pointed out that if this view is correct we have the interesting case of a *slow* electrolytic dissociation. Furthermore, we know that the chlorine ion given off by the purpureo radical is replaced by a water molecule; by analogy the same thing would be expected in the dissociation of an ordinary electrolyte.

Finally, it was shown that in the dry state the roseo salts have a critical aqueous vapor pressure above which only a very slow loss of water occurs. The change does not appear to be reversible. It was further shown that the change is necessarily connected with the absorption or evolution of water.

We are carrying out measurements, similar to those described in this paper, on the ammines of chromium, iridium and rhodium and on the complex salts of cobalt and other metals with ethylenediammine.

NEW YORK CITY.

[CONTRIBUTION FROM THE CHEMICAL LABORATORIES OF CLARK UNIVERSITY.] A RE-INVESTIGATION OF THE VELOCITY OF SUGAR HYDROLYSIS. FIRST COMMUNICATION.

BY M. A. ROSANOFF, R. H. CLARK, AND R. L. SIBLEY.

Received October 14, 1911.

1. Introductory.

The mechanism of sugar hydrolysis is as yet scarcely understood. Even as to the number of molecules that take part in the hydrolysis physico-chemical literature contains but incomplete information. Most investigators have, namely, found the reaction to be monomolecular with respect to sugar. There is some evidence also that the process involves the catalytic activity of one hydrogen ion. Finally, it is believed that the reaction is monomolecular with respect to water; but on this last point there are no experimental data.

In 1904 Armstrong and Caldwell¹ published a study of the hydrolysis of cane sugar by very dilute acids, from which it appears that even with respect to the sugar the reaction is not strictly monomolecular throughout its course, that in the earlier stages the reaction does not obey the mass law at all, the velocity coefficient showing a regular *increase*. Armstrong and Caldwell's measurements were numerous and skilfully carried out.

Four years later Julius Meyer² carried out similar measurements and likewise found the velocity coefficient changing during the early stage of the reaction. Meyer's coefficients, however, showed, not an increase, but a gradual *decrease*. Meyer believed that his results could be fully explained by assuming that the hydrolysis is complicated by a pair of side reactions taking place simultaneously with it: namely, the mutarotation of glucose and of fructose.

Meyer's measurements have been criticized by Hudson,³ who justly points out that mutarotation can only lead to an *increasing* velocity coefficient, although, on the other hand, increase of the coefficient might also be caused by variation of the specific rotation of fructose with its concentration. He believes that Meyer's decreasing coefficients can only be explained by experimental errors. He agrees, however, that "the hydrolysis of cane sugar is not the simple reaction that it has heretofore been supposed to be, but is accompanied by two other important reactions."⁴

Hudson⁵ accepts Armstrong and Caldwell's results, but thinks "the matter still in doubt as to whether Armstrong and Caldwell's deviation is due to mutarotation, change of rotation of fructose, or a true exception to the law of mass action, which latter view is the one that Armstrong and Caldwell hold."

That sugar hydrolysis is either a complex process, or else forms an exception to the law of mass action, might also be concluded from a phenomenon described by Ostwald a quarter of a century ago.⁶ If the hydrolysis is monomolecular with respect to sugar, and the amount of water present is relatively large, the rate of the reaction should follow the monomolecular equation of mass action. According to this equation, the velocity coefficient must be independent of the initial concentration

⁸ J. prakt. Chem., **31**, 316 (1885).

¹ Proc. Roy. Soc. London, 74, 195 (1904).

² Z. physik. Chem., 62, 59 (1908); see also Ibid., 72, 117 (1910).

³ This Journal, **3**0, 1165 (1908); **32**, 885 (1910).

⁴ Ibid., 32, 886 (1910).

⁵ Ibid., 889.

of the sugar. Ostwald, however, states that the velocity coefficient increases rapidly with the initial sugar concentration. For example, using hydrochloric acid of one and the same concentration (0.5 normal) as a catalyzer, he obtained:

Initial concentration of sugar. Per cent.	Velocity coefficient k.
4	19.14
IO	20.63
20	22.87
40	29.16

In connection with these figures Ostwald observes: "The velocity constants change with the quantity of sugar almost in the ratio of three to two. It is, therefore, doubtless that the process of inversion is subject to the influence of side reactions, which manifest themselves the more clearly, the more concentrated the solutions."

Figures similar to Ostwald's have been published by Spohr.¹ A theory of the variation has been introduced by Arrhenius.²

2. Does the Velocity of Sugar Inversion Depend upon the Initial Concentration of the Sugar?

The first part or our re-investigation of the subject deals with the role played by the sugar and is reported in the present communication.³

The comparative measurements of Ostwald, Spohr, and others were carried out on solutions prepared in a manner equivalent to adding equal amounts of acid to equal volumes of a standard sugar solution and diluting with water, respectively, to twice, four times, etc., the original volume. The solutions of unequal sugar concentrations were, therefore, equally concentrated with respect to acid. But they contained *unequal quantities of water* per unit volume.

The effect of unequal quantities of water upon the catalytic power of an acid is as yet unknown. And so it seemed desirable to carry out new measurements, keeping the concentrations of both acid and water constant. Such is very nearly the case during the hydrolysis of any one given solution, and then the velocity coefficient remains constant. This constancy has been explained by assuming that the invert sugar, which gradually replaces the cane sugar, has a specific catalytic influence, similar to that of cane sugar itself, upon the rate of hydrolysis.

In order to ascertain more definitly whether the cause lies in such a specific influence of invert sugar, or in the constancy of the concentration of both acid and water, we prepared three pairs of solutions, acid

¹ J. prakt. Chem., 33, 266 (1886).

²Z. physik. Chem., 28, 319 (1899). See also Ernst Cohen, Ibid., 23, 442 (1897).

⁸ Further parts, dealing with the role played by water, acid, and neutral salts, will follow in communications from these laboratories as soon as practicable.

and water having exactly the same concentration in each pair, but the sugar in one solution of each pair being replaced, in part, by glucose, mannitol, or acetone. In order to make the volumes of two solutions of a pair exactly alike, preliminary experiments were carried out, to show how much glucose, or mannitol, or acetone, as the case might be, must be added in place of part of the cane sugar to make the volume equal to that of the comparison solution containing none of the foreign substance. These data enabled us to weigh out precisely the quantities of the ingredients needed for every final experiment, warm them separately to the required temperature, and mix them rapidly at the beginning of the experiment. The rotations during hydrolysis were measured, for the most part, with an excellent half-shade quartz wedge compensation saccharimeter kindly placed at our disposal by Dr. William D. Horne, of the National Refining Company, Yonkers, N. Y. We wish to express here again our gratitude to Dr. Horne for his courtesy and generosity.

The temperature of the reacting mixtures was kept constant at $30^{\circ} \pm 0.02^{\circ}$. To avoid disturbances, the rotations were observed at the same temperature, 30° , the instrument used being inclosed in a wooden box within which this temperature was maintained sufficiently constant. Under these circumstances, our results can have no claim to high precision, but they are precise enough for the purposes of the problem. Kahlbaum's best formic acid, which we found to be 99.2 per cent. strong, was used in all except our two acetone experiments (an approximately 85 per cent. commercial acid was used in the acetone series). No further purification was required, for obvious reasons.

The results which we were aiming to obtain would plainly be the more decisive the greater the difference between the initial sugar concentrations of each pair of solutions. In our experiments these differences were limited by the solubilities involved.

In the tables below, t denotes the time in hours, α is the rotation ob-

TABLE ITHE	SOLUTION	CONTAINED	50.500 0	Grams	Cane	Sugar,	195.73 GRAMS
WATER,	AND 28.750	GRAMS FORM	MIC ACID	(99.2	Per	CENT.) IN	250 CC.

IIR, MID 20.750	Ordina I ondine Here	(99.2		230 00.
α.	k .	t.	α.	k.
[78.00°]		37	6.45	0.0150
71.00	0.0159	42	2.30	149
68.10	152	48	— 1.95	149
65.10	151	52	- 4.05	147
62.30	150	61	— 9. 00	149
56.70	150	72	-12.90	150
50.55	148	86	<u> </u>	147
44.60	149	95	-17.25	150
38.25	148.	I I 2	—19.30	154
32.40	148	8	-21.15	
27.35	148			<u> </u>
22.45	149		Average,	0.0150
17.10	148			
	$\begin{array}{c} \alpha \\ [78.00°] \\ 71.00 \\ 68.10 \\ 65.10 \\ 62.30 \\ 56.70 \\ 50.55 \\ 44.60 \\ 38.25 \\ 32.40 \\ 27.35 \\ 22.45 \end{array}$	a.k. $[78.00^\circ]$ 71.00 0.0159 68.10 152 65.10 151 62.30 150 56.70 150 50.55 148 44.60 149 38.25 148 32.40 148 27.35 148 22.45 149	α .k.t. $[78.00^{\circ}]$ 37 71.00 0.0159 42 68.10 152 48 65.10 151 52 62.30 150 61 56.70 150 72 50.55 148 86 44.60 149 95 38.25 148 112 32.40 148 ∞ 27.35 148 22.45 149	a.k.i.a. $[78.00^{\circ}]$ 37 6.45 71.00 0.0159 42 2.30 68.10 152 48 -1.95 65.10 151 52 -4.05 62.30 150 61 -9.00 56.70 150 72 -12.90 50.55 148 86 -15.80 44.60 149 95 -17.25 38.25 148 112 -19.30 32.40 148 ∞ -21.15 27.35 148 49 $Average$

served, and k is the velocity constant of the monomolecular mass law equation, calculated by the formula

$$k = \frac{1}{t} \log_{10} \frac{\alpha_0 - \alpha_\infty}{\alpha - \alpha_\infty},$$

where α_0 and α_{∞} denote, as usual, the initial and final rotations respectively. The initial rotations (t = 0), enclosed in brackets, were *calculated* as explained in Section 3.

TABLE II.—THE SOLUTION	CONTAINED 14.250 (GRAMS CANE SUGAR,	35.000 Grams
GLUCOSE, 195.73 GRAMS	s Water, and 28.750	GRAMS FORMIC ACID	IN 250 CC.

<i>t</i> .	α.	k.	<i>t</i> .	α.	k .
0	[66.40°]		24	50.75	0.0152
2	64.60	0.0151	27	49.65	151
3	63.70	152	31	48.35	150
4	62.90	150	37	46.70	148
5	62.10	149	43	45.20	149
6.5	60.90	150	51	43.65	149
8	59.80	150	55	43.05	150
10	58.50	147	64	41.70	155
I 2	57.10	150	75	40.70	150
18	53.55	152	89	40.05	155
2 I	52.15	151	8	38.90	••

Average, 0.0150

The velocity coefficients in the two comparison series given by Tables I and II are obviously identical. The initial sugar concentrations are in the ratio of 3.54 to 1.

 TABLE III.—THE SOLUTION CONTAINED 37.613 GRAMS CANE SUGAR, 203.44 GRAMS

 WATER, AND 28.750 GRAMS FORMIC ACID IN 250 CC.

ŧ.	α.	k.	<i>t</i> .	α.	k.
ο	[57.90°]		24	16.95	0.0148
I	55.10	0.0169	27	13.50	149
2	53.15	146	31	10.10	146
3	50.80	147	35	6.75	148
4	48.50	149	40	3.40	147
5	46.50	147	46	— o.40	149
6	44.40	147	52	— 2.95	148
8	40.50	147	60	— 5.90	147
9	38.70	146	66	— 7·45	146
II	35.20	146	74	— 9.40	146
13	31.80	147	85	-11.25	146
15	28.90	146	95	<u> </u>	149
18	23.80	145	II2	—13.80	147
2 I	20.70	146	8	—15.45	

t.	α.	k.	t.	α.	k.
о	[22.10°]		30	4.50	0.0147
I	21,10	0.0160	34	3.25	147
2	20.30	146	39	1.90	146
3.5	19.00	148	45	0.35	149
5	17.85	145	51	-0.55	149
8	15.60	146	59	—1.80	146
ю	14.15	148	65	2.50	148
I 2	12.90	147	73	-3.20	148
15	11.10	147	84	-3.90	148
17	10.05	146	94	-4.30	147
20	8.65	145	III	-4.85	145
23	7.25	146	133	-5.10	147
26	6.00	146	8	-5. 5 0	••
				Average,	0.0146

TABLE IV.—THE SOLUTION CONTAINED 14.250 GRAMS CANE SUGAR, 22.000 GRAMS MANNITOL, 203.44 GRAMS WATER, AND 28.750 GRAMS FORMIC ACID IN 250 CC.

The velocity coefficients in the two comparison series given by Tables III and IV are again equal. The initial sugar concentrations are in the ratio of 2.64 to 1.

A third pair of solutions, with acetone used to equalize the volumes, and again with the acid and water concentrations equal, gave a similar result: the two velocity coefficients were practically identical. In this case it seemed desirable to have some acetone in both solutions, to avoid too abrupt a difference in the nature of the reacting medium. An aqueous commercial acid was employed. Unfortunately, the determination of its exact strength was prevented by accident, and therefore the measurements will not be reported in detail.

The results given in Tables I to IV (together with the results of the acetone series just mentioned) show that the constancy of the velocity coefficient of sugar hydrolysis is not due to any specific effect of the invert sugar which gradually replaces the cane sugar in an ordinary single experiment. Glucose, mannitol, and acetone, and presumably any other inert substance, may be introduced in place of more or less of the cane sugar, and the velocity coefficient will be the same, as long as the concentrations of both water and acid remain unchanged. The velocity coefficient is independent of the initial concentration of the sugar itself.

3. Do Armstrong and Caldwell's Results Indicate Either Side Reactions or Deviation from the Law of Mass Action?

As before stated, Armstrong and Caldwell found a regular increase of the velocity coefficient in the early stages of sugar hydrolysis. The following circumstance, however, led us to suspect that their varying values of k might be only apparent; due, not to complicating side-reactions,

or deviations from the mass law, but to slight errors in the assumed values of α_0 . If, namely,

$$k = \frac{\mathbf{I}}{t} \ln \frac{\alpha_0 - \alpha_\infty}{\alpha - \alpha_\infty},$$

then, for a given set of values of t, α , and α_{∞} (since slight changes of α_0 leave the difference $\alpha_0 - \alpha_{\infty}$ practically constant),

$$\frac{dk}{d\alpha_0} = \frac{1}{t(\alpha_0 - \alpha_\infty)} = \frac{1}{t} \times \text{ constant.}$$

In words: the effect of an error in the initial reading α_0 upon the value of the velocity constant k is inversely proportional to the time elapsed since the beginning of the reaction. This means that even a slight error in the value of α_0 assumed in computing k is liable to lead to grossly erroneous values of k for the earliest stages of the reaction (especially in dilute solutions, where $\alpha_0 - \alpha_\infty$ is small). The error rapidly decreases and becomes inappreciable for the more advanced stages of the reaction.

A far more reliable value of α_0 than can be obtained by direct observation may be calculated as follows: The ordinary monomolecular equation

$$k = \frac{\mathbf{I}}{t} \log_{10} \frac{\alpha_0 - \alpha_\infty}{\alpha - \alpha_\infty}$$

is written in the form

$$\log_{10}(\alpha - \alpha_{\infty}) = \mathbf{A} + \mathbf{B}t;$$

the best values of A and B are obtained by applying the method of least squares to all the observations of a given series, and α_0 is readily found from $A = \log_{10}(\alpha_0 - \alpha_\infty)$. The value of α_0 is then as reliable as that of α_∞ , which can be observed at leisure with all possible care.

Another way, based on the same principle, consists in plotting, on as large a scale as possible, the available values of $\log_{10}(\alpha - \alpha_{\infty})$, against the corresponding values of t, and extrapolating to t = 0 to find $\log_{10}(\alpha_0 - \alpha_{\infty})$, and hence α_0 . Armstrong and Caldwell's results, when plotted in this manner on a large scale, yielded perfectly straight lines for all series, without the slightest indication of curvature anywhere (see Table IX), demonstrating sugar hydrolysis to be a simple reaction, monomolecular with respect to sugar, and free from disturbing (i. e., relatively slow) mutarotation reactions or other side-reactions throughout its course (see Section 4 below).

The figures given in the following tables were obtained from values of α_0 (enclosed in brackets) yielded by the method of least squares. That Armstrong and Caldwell's observed values of α_0 are erroneous, and that our calculated values are much more reliable, is clearly indicated by the data reproduced in Tables V and VI. The solutions corresponding to these tables had identically the same final rotation, -5.37°, and hence must have been identical in composition. Yet the observed initial rotations were respectively 22.22° and 22.12° . On the other hand, our calculated values, 22.28° and 22.26° , are practically equal.¹

TABLE	V.—Armsi	RONG AND	CALDWELL'S RE	esults (I	Loc. cit., p	. 197) Rec.	ALCULATED,
<i>t</i> .	α.	k(A, & C.). ²	k(recalc.).	t.	α.	$k(A. \& C.).^2$	k(recalc.).
o	[22.28°]		• • •	240	16.17	0.000448	0.000456
15	21.83	0.000412	(0.000472) ³	255	15.78	453	458
30	21.40	437	(467)	270	15.43	454	462
45	21.00	437	456	285	15.05	459	456
60	20.63	430	445	345	13.87	455	456
75	20.18	445	457	360	13.57	454	458
90	19.77	449	459	375	13.25	455	458
105	19.45	438	446	390	12.95	456	459
120	19.00	449	457	405	12.65	457	456
135	18.63	448	455	420	12.42	454	457
150	18.27	447	453	435	12.13	454	457
165	17.92	446	452	450	11.85	453	457
180	17.52	45 I	456	465	11.58	455	457
195	17.18	449	454	480	11.32	455	456
210	16.83	450	455	495	11.07	454	457
225	16.47	451	452	510	10.80	455	455
				×	—5·37	• ·	• • • •

Average, 0.000456

TABLE	VI.—Arm	STRONG AND	CALDWELL'S	RESULTS	(Loc. cit.,	p. 197) Red	CALCULATED.
t.	α.	$k(A. \& C.).^4$	k(recalc.).	<i>t</i> .	α.	$k(A. \& C.).^2$	k(recalc.).
0	[22.26°]			270	15.60	0.000435	0.000445
15	21.73	0.000414	(0.000564)	285	15.27	437	446
30	21.35	411	(486)	300	14.93	439	446
45	20.97	412	(462)	315	14.63	438	447
60	20.58	417	455	330	14.30	44 I	444
75	20.22	415	455	345	13.95	444	449
90	19.82	422	447	360	13.68	442	448
105	19.45	423	444	375	13.35	443	448
120	19.03	431	450	390	13.10	445	449
135	18.72	425	44 I	405	12.83	442	447
150	18.37	425	440	420	12.53	444	449
165	18.00	427	44 I	435	12.23	445	450
180	17.60	433	446	450	11.97	445	450
195	17.23	436	448	465	11.73	443	448
210	16.90	435	446	480	11.48	443	448
225	16.60	433	443	495	11.23	443	447
240	16.27	433	442	510	11.03	440	444
255	15.93	434	444	8	— 5·37		•••

Average, 0.000447

¹ The decrease of the recalculated coefficients in the very beginning of the series in Tables V–VIII deserves no consideration, as there the coefficients are enormously affected by errors of α_0 , α , and t. Under t in these tables time is expressed in minutes.

² Based on $\alpha_0 = 22.22^\circ$.

 3 The average coefficient, 0.000456, would have resulted instead of 0.000472 if the observed rotation had been not 21.83°, but 21.85°.

⁴ Based on $\alpha_0 = 22.12^{\circ}$.

VELOCITY OF SUGAR HYDROLYSIS.

1.	α.	k(A. & C.). ¹	k(recalc.).	1.	α,	$k(A. \& C.).^1$	k(recalc.).
о	[46.38°]			290	29 . 87	0.000498	0.000507
10	45.47	0.000428	(0.000692)	300	29.08	495	504
20	44.83	461	(593)	310	28.83	502	510
30	44.20	47 I	(559)	320	28.42	500	508
40	43.62	468	(534)	330	27.93	501	509
50	42.97	478	(531)	340	27.43	503	511
60	42.37	479	(523)	350	26.97	503	511
70	41.80	477	515	360	26.55	503	510
80	41.17	482	515	370	26.12	503	510
90	40.57	485	514	380	25.65	504	411
100	40.07	488	505	390	25.25	504	510
110	39.45	483	507	400	24.87	502	509
120	38.85	486	508	410	24.42	503	509
130	38.28	487	507	420	24.02	503	509
140	37.67	491	509	430	23.62	503	509
150	37.13	490	508	440	23.17	504	510
160	36.55	492	509	450	22.80	503	509
170	36.03	491	507	460	22.38	504	510
180	35.43	495	510	470	21.93	506	511
190	34 · 93	494	508	480	21.53	507	512
200	34.45	492	505	490	21.13	507	512
210	33.87	495	508	500	20.77	507	512
220	33.38	494	506	510	20.40	507	512
230	32.87	494	506	520	20.00	508	513
240	32.38	494	505	530	19.68	506	511
260	31.28	499	509	540	19.27	508	513
270	30.80	499	508	8	—II.I2		
280	30.38	496	506				

TABLE VII.—ARMSTRONG AND	CALDWELL'S RESULTS ((Loc. cit., p. 198)	RECALCULATED.
--------------------------	----------------------	---------------------	---------------

Average, 0.000509

TABLE VIII.—ARMSTRONG AND CALDWELL'S RESULTS (Loc. cit., p. 198) RECALCULATED.

t.	α.	k(A. & C.).9	k(recalc.).	t.	α.	$k(A. \& C.).^2$	k(reca lc .).
0	[44.89°]	• • • •		230	31.13	0.000527	0.000537
10	44.02	0.000481	(0.000681)	240	30.65	526	534
20	43.37	489	(600)	250	30.13	527	535
30	42.75	493	(566)	260	29.62	528	535
40	42.20	487	539	270	29.08	530	537
50	41.58	492	531	280	28.60	530	536
60	40.93	500	531	290	28.15	529	535
70	40.30	505	533	300	27.63	530	537
90	39.10	507	530	310	27.22	528	535
100	38.47	512	532	320	26.72	530	536
110	37.87	513	531	330	26.28	529	535
120	37.28	515	531	340	25.83	529	535
130	36.70	516	531	350	25.32	532	537
140	36.13	516	531	360	24.88	532	536
150	35.53	519	533	370	24.47	531	536
1 1	Based on a	$= 46.03^{\circ}$					

¹ Based on $\alpha_0 = 46.03^{\circ}$. ² Based on $\alpha_0 = 44.63^{\circ}$.

				(
t.	α,	k(A. & C.).	k(recalc.).	<i>t</i> .	<i>a</i> .	k(A.& C.).	k(recalc.).
160	34.95	0.000521	0.000534	380	24.02	0.000532	0.000537
170	34 · 33	525	536	390	23.60	531	536
180	33.78	526	537	400	23.15	532	537
190	33.25	525	536	410	22.73	532	537
200	32.73	525	535	420	22.35	531	536
210	32.25	523	532	80	—10.79		
220	31.65	527	536				<u> </u>
						Average,	0.000535

TABLE VIII (continued).

To show how closely $\log_{10}(\alpha - \alpha_{\infty})$ is represented by a linear function of t, we reproduce in Table IX the figures for one of Armstrong and Caldwell's series (the same as that of Table V). Under $\log_{10}(\alpha - \alpha_{\infty})$ obs. are values based on the observations; under $\log_{10}(\alpha - \alpha_{\infty})$ calc. are values calculated from the equation

\log_{10}	(α ·	a	ư∞)		1.441	65	o.	0004	4562 <i>t</i> .
			,	Гаі	BLE IX	Ξ.			

t.	$\log_{10}(\alpha - \alpha_0) obs.$	$\log_{10}(\alpha - \alpha_0)$ calc.	<i>t</i> .	$\log_{10}(\alpha - \alpha_0) obs.$	$\log_{10}(\alpha - \alpha_0)$ calc.
15	1.4346	1.4348	255	1.3253	1.3253
30	1.4276	1.4280	270	1.3181	1.3185
45	1.4211	1.4211	285	1.3101	1.3116
60	1.4150	1.4143	345	1.2842	1.2843
75	1.4074	1.4074	360	1.2774	1.2774
90	1.4004	1.4006	375	1.2700	1.2706
105	1.3948	1.3937	390	1.2629	1.2637
120	1.3869	1.3869	405	1.2558	1.2569
135	1.3802	1.3801	420	1.2502	1.2500
150	1.3736	1.3732	435	1.2430	1.2432
165	1.3672	1.3664	45 ⁰	1.2360	1.2364
180	1.3596	1.3595	465	1.2292	1.2295
195	1.3531	1.3527	480	1.2225	1.2227
210	1.3464	1.3458	495	1.2159	1.2158
225	1.3393	1.3390	510	1.2087	I . 2090
240	1.3332	1.3322	525	1.2028	I.202I

4. Do Julius Meyer's Results Indicate Either Side Reactions or Deviation from the Law of Mass Action?

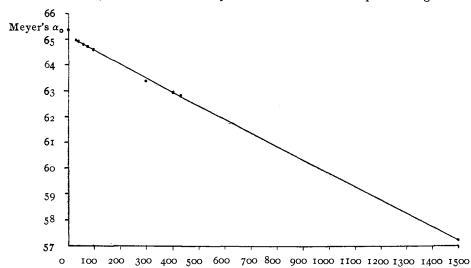

Meyer's velocity coefficients show a great decrease. If the variation were here again due to an erroneous α_0 , it seemed reasonable to expect that the error was large enough to appear if the actual readings α were directly plotted against the corresponding times t. As a matter of fact, the accompanying figure, representing the data of Meyer's "Tabelle 18,"¹ shows that the curve of α 's cannot possibly originate in the point representing the α_0 assumed by Meyer.

Table X reproduces the same series of Meyer's and shows that with a 1 Loc. cit., 62, 79.

correct α_0 the velocity coefficient (k recalculated) is constant within the errors of experiment.¹

TABLE X.—ONE OF JULIUS MEYER'S SERIES (Loc. cit., 62, 79) RECALCULATED.					
t (min.).	α.	k (Meyer). ²	k(recalc.).		
о	[65.09°]				
7	65.18(?)	0.000302			
ю	65.14(?)	258	• • • • •		
24	64.96	195	0.0000275		
38	64.88	151	280		
55	64.80	119	269		
72	64.71	106	269		
98	64.58	95	266		
296	63.38	79	297		
400	62.89	73	283		
430	62.81	70	270		
1500	57.20	67	281		
×	-20.28		•••		
		Average,	0.0000277		

Armstrong and Caldwell's, Meyer's, and our own measurements thus demonstrate that sugar hydrolysis proceeds in accordance with the law of mass action, as a reaction strictly monomolecular with respect to sugar.

Side-reactions comparable in speed with the hydrolysis proper would manifest themselves in deviations from the monomolecular equation, and hence if mutarotation, for instance, accompanies the hydrolysis at

¹ See also Hudson, This JOURNAL, 30, 1165 (1908).

² Based on $\alpha_{\circ} = 65.36^{\circ}$.

all, it must reach completion with relatively great rapidity and may be left out of account.¹

This may suggest the conclusion that the *mechanism* of sugar hydrolysis is correctly described by the ordinary stoichiometric equation, single uncombined sugar molecules being hydrolyzed by water rendered active by the hydrogen ions of the catalyzer. But such a conclusion is not necessarily right. Indeed, the reaction would still follow the monomolecular equation if each single molecule undergoing hydrolysis were not sugar itself, but a compound of one (not more than one) sugar molecule with molecules of one or more other substances.

5. Does the Polariscope Show the True Composition of the Solution during Hydrolysis?

Hudson² points out that polarimetric analysis, which assumes that the partial rotations of sucrose, glucose, and fructose are proportional to their concentrations, involves a considerable error. The specific rotations of the three sugars vary appreciably with the concentrations, and that of fructose varies rapidly: "If the progress of the inversion is calculated from the polariscopic readings under the assumption that the specific rotation of fructose remains constant during the reaction, the velocity coefficient must be expected to increase."

The hydrolysis measurements discussed above exhibited no such increase; and so it seemed desirable to re-investigate the assumption that the rotation is a linear function of the percentage of sugar hydrolyzed. When our results were complete, a set of data on the subject were discovered in one of Ostwald's publications.³ But as our method permitted of reproducing the conditions of an actual hydrolysis experiment somewhat more closely than Ostwald's,⁴ it may not be superfluous to briefly mention our results.

Five solutions were made up containing the same amounts of water and acid as the solution of Table I (Section 2 above), viz., 195.73 grams water and 28.750 grams formic acid, but respectively 7.500, 15.000, 22.500, 30.000, and 37.500 grams of sugar instead of the 50.500 grams contained in that solution. An exactly similar set of five solutions was prepared for control experiments, and the two sets were abandoned for hydrolysis at a moderate temperature. When the control solutions showed that in-

¹ That in the absence of acids, when sugar is hydrolyzed by the enzyme invertase, mutarotation reactions do accompany the hydrolysis and proceed with a speed not very different from that of the hydrolysis itself, has been shown by O'Sullivan and Thompson, J. Chem. Soc., 57, 927 (1890), and by Hudson, THIS JOURNAL, 30, 1160 (1908).

² This Journal, **32**, 888 (1910).

⁸ J. prakt. Chem., 29, 390 (1884).

⁴ Ostwald measured the rotation of solutions of known cane and invert sugar content after eliminating **the cata**lyzing acid.

version was complete, the following amounts of cane sugar were added to the five principal solutions (taken in the same order as above): viz., 43.000, 35.500, 28.000, 20.500, and 13.000 grams. The temperature having been reduced to 30.00°, the five solutions were at that moment exactly like the solution of Table I at several stages of hydrolysis, with the percentages hydrolyzed precisely known. It remained to ascertain the corresponding rotations. Hydrolysis had set in anew with the addition of sugar, and now a series of rotation readings were taken, at intervals of I hour, for periods of 15 to 20 hours. The desired "initial" readings were found by a simple extrapolation method. These readings lay unmistakably on a straight line, which was best represented by the equation

$$\alpha = \alpha_{0} - 0.01(\alpha_{0} - \alpha_{\infty})p = 78.19 - 0.9938p,$$

where p is the percentage hydrolyzed. The equation gives: $\alpha_0 = 78.19^{\circ}$ and $\alpha_{\infty} = -21.19^{\circ}$, in sufficient agreement, respectively, with the $\alpha_0 = 78.00^{\circ}$ required by the figures of Table I and the $\alpha_{\infty} = -21.15^{\circ}$ found by direct observation.¹

6. The Variation of the Specific Rotatory Power of Fructose.

Ostwald's determinations, together with the results just mentioned, point to the conclusion that in a sugar solution in process of hydrolysis the specific rotation of fructose is constant.

Now, during hydrolysis the water concentration remains practically constant. On the other hand, in aqueous solutions of fructose used in a study of its rotatory power the water concentrations are varied together with those of the fructose itself. For instance, a 35 per cent. solution of fructose contains about 30 per cent. less water than an equal volume of a highly dilute solution. And so the idea suggested itself that the cause of the variation of the specific rotatory power of fructose may lie in the varying water content of the solutions employed.

By way of a first test of this idea, it was proposed to prepare a strong (about 35 per cent.) solution of fructose, and dilute it gradually with a solution of some other substance containing the same amount of water per unit volume as the fructose solution itself. In order to simplify the manipulations involved, it was decided to try as a diluting medium a solution of cane sugar of the same density as the fructose solution. Two such solutions were expected to prove nearly enough equal in water concentration and also to mix without contraction or expansion of volume.

An approximately 100-gram lot (undried) of Kahlbaum's fructose was dissolved in water, and the solution, diluted to 250 cc. at 17.5° , was abandoned for a considerable time, till at least the more rapid stages of mutarotation were over. It was then decolorized with boneblack in the

¹ In angular degrees the differences amount to only 0.06° and 0.01°, respectively.

cold. Its specific gravity at 17.5° , referred to water of the same temperature, was 1.1502.

Next a solution of cane sugar of the same density was prepared by dissolving 98.496 grams (calculated by Arrhenius' formula) of sugar in water and diluting to 250 cc. at 17.5° . A specific gravity determination at that temperature gave 1.1501.

The quantities of water in the two solutions differed by less than I per cent. When equal samples of the two were mixed together, neither contraction nor expansion took place: the specific gravity of the mixture at 17.5° was found to be 1.1501.

It was thus possible, by mixing the two solutions in several different proportions, and observing the rotations of the mixtures, to determin whether the partial rotations of the fructose solution were proportional to the quantities of that solution in the mixture, and hence whether the specific rotation of fructose remained constant.

If the partial rotation of the fructose solution is proportional to its percentage in the mixture, then the total rotation (α) must be a linear function of that percentage (p). As a matter of fact, Table XI shows that the observed rotations are almost perfectly reproduced by the equation

$$\alpha = 24.54 - 0.5830p$$
,

and hence, that the specific rotation of fructose in our mixtures was independent of its concentration. But this matter will be subjected here to further study.

	TABLE XI.					
<i>þ</i> .	a obs.	α calc.	Diff.			
0.00	+24.54°	+24.54°	±0.00°			
10.41	+ 18.53	+ 18.47	0.0 6			
20,12	+12.78	+ 12.81	+0.03			
30.04	+ 7.03	+ 7.03	±0.00			
40.23	+ 1.09	+ 1.09	±0.00			
60.03	-10.55	10.46	+0.09			
6 9.76	—16.17	-16.12	+0.05			
89.69	-27.72	-27.75	-0.03			
WORCESTER, MASS., June, 1911.						

STUDIES IN CONDUCTIVITY. I. THE CONDUCTIVITY OF AM-MONIA IN (ANHYDROUS) FORMIC ACID. I. "FORMIC A CID HYDROLYSIS."

BY H. I. Schlesinger and R. P. Calvert. Received October 24, 1911.

In recent years, a great deal of attention has been given to the study of non-aqueous solutions, especially from the point of view of the theory of ionization. While this work has covered a wide range of solvents, the